การออกแบบวงโคจรของดาวเทียมขึ้นอยู่กับวัตถุประสงค์ของการใช้งานดาวเทียม ระดับความสูงของดาวเทียมมีความสัมพันธ์กับคาบเวลาในวงโคจรตามกฎของเคปเลอร์ข้อที่ 3 (กำลังสองของคาบวงโคจรของดาวเทียม แปรผันตาม กำลังสามของระยะห่างจากโลก) ดังนั้น ณ ระดับความสูงจากผิวโลกระดับหนึ่ง ดาวเทียมจะต้องมีความเร็วในวงโคจรค่าหนึ่ง มิฉะนั้นดาวเทียมอาจตกสู่โลกหรือหลุดจากวงโคจรรอบโลก ดาวเทียมวงโคจรต่ำเคลื่อนที่เร็ว ดาวเทียมวงโคจรสูงเคลื่อนที่ช้า
นักวิทยาศาสตร์คำนวณหาค่าความเร็วในวงโคจรได้โดยใช้ “กฎความโน้มถ่วงแห่งเอกภพของนิวตัน” (Newton's Law of Universal Gravitation) “วัตถุสองชิ้นดึงดูดกันด้วยแรงซึ่งแปรผันตามมวลของวัตถุ แต่แปรผกผันกับระยะทางระหว่างวัตถุยกกำลังสอง” ดังนี้
แรงสู่ศูนย์กลาง = แรงโน้มถ่วงของโลก
mv2/r = G (Mm/r2)
v = (GM/r)1/2
โดยที่ v = ความเร็วของดาวเทียม M = มวลของโลก m = มวลของดาวเทียม r = ระยะทางระหว่างศูนย์กลางของโลกกับดาวเทียม G = ค่าคงที่ของแรงโน้มถ่วง = 6.67 x 10-11 Nm2/kg2
ตัวอย่างที่ 1 ถ้าต้องการส่งดาวเทียมให้โคจรรอบโลกที่ระดับสูง 35,780 กิโลเมตร ดาวเทียมจะต้องมีความเร็วในวงโคจรเท่าไร
r = 6,380 km (รัศมีโลก) + 35,786 km (ระยะสูงของวงโคจร) = 4.23 x 107 km
v = (GM/r)1/2 = {(6.67 x 10-11 Nm2/kg2)(5.98 x 1028 kg)/(4.23 x 107)} 1/2 = 11,052 กิโลเมตรต่อชั่วโมง
ตารางที่ 1 ความสัมพันธ์ระหว่างระดับสูงของดาวเทียมกับคาบวงโคจรรอบโลก
ความสูงจากผิวโลก (กิโลเมตร) | ความเร็วในวงโคจร (กิโลเมตรต่อชั่วโมง) | คาบเวลาในการโคจร รอบโลก 1 รอบ | 160 1,609 35,786 | 28,102 25,416 11,052 | 1 ชั่วโมง 27.7 นาที 1 ชั่วโมง 57.5 นาที 24 ชั่วโมง |
ข้อมูลในตารางที่ 1 แสดงให้เห็นถึงความสัมพันธ์ระหว่างระดับความสูงของดาวเทียมและความเร็วในวงโคจร กฎแปรผกผันยกกำลังสองของนิวตันกล่าวว่า ยิ่งใกล้ศูนย์กลางของแรงโน้มถ่วง (ศูนย์กลางของโลก) แรงโน้มถ่วงจะเพิ่มขึ้น ดังนั้น - ถ้าต้องการให้ดาวเทียมมีวงโคจรต่ำ ดาวเทียมจะต้องเคลื่อนที่เร็วมาก เพื่อเอาชนะแรงโน้มถ่วงของโลก ดาวเทียมวงโคจรต่ำจึงใช้เวลาในการโคจรรอบโลกน้อยที่สุด
- ดาวเทียมวงโคจรสูงมีความเร็วในวงโคจรช้ากว่าวงโคจรต่ำ ทั้งนี้เนื่องจากสูงขึ้นไป ยิ่งอยู่ห่างจากศูนย์กลางแรงโน้มถ่วง ดาวเทียมวงโคจรสูงจึงโคจรรอบโลกใช้เวลามากกว่าดาวเทียมวงโคจรต่ำ
- ถ้าต้องการให้ดาวเทียมโคจรไปพร้อมๆ กับที่โลกหมุนรอบตัวเอง ดาวเทียมจะลอยค้างอยู่เหนือพิกัดภูมิศาสตร์ที่ระบุบนพื้นผิวโลกตลอดเวลา จะต้องส่งดาวเทียมให้อยู่ที่ความสูง 35,786 กิโลเมตร เหนือพื้นผิวโลก วงโคจรระดับนี้เรียกว่า "วงโคจรประจำที่" (Geostationary Earth Orbit)" ซึ่งเหมาะสำหรับใช้ในการสะท้อนสัญญาณโทรคมนาคม
ภาพที่ 1 วงโคจรประเภทต่างๆ
ในการออกแบบวงโคจรของดาวเทียม นอกจากความสูงของวงโคจรแล้ว ยังต้องคำนึงถึงทิศทางของวงโคจร เนื่องโลกหมุนรอบตัวเอง นักวิทยาศาสตร์จะต้องคำนึงถึงพื้นที่บนพื้นผิวโลกที่ต้องการให้ดาวเทียมเคลื่อนที่ผ่าน เราสามารถจำแนกประเภทของวงโคจร ตามระยะสูงของวงโคจรได้ดังนี้ - วงโคจรระยะต่ำ (Low Earth Orbit "LEO") อยู่สูงจากพื้นโลกไม่เกิน 2,000 กม. เหมาะสำหรับการถ่ายภาพรายละเอียดสูง แต่เนื่องจากวงโคจรระยะต่ำอยู่ใกล้พื้นผิวโลกมาก ภาพถ่ายที่ได้จึงครอบคลุมพื้นที่เป็นบริเวณแคบ และไม่สามารถครอบคลุมบริเวณใดบริเวณหนึ่งได้นาน ดาวเทียมในวงโคจรระต่ำเคลื่อนที่เร็วมาก เนื่องจากอยู่ใกล้อิทธิพลของแรงโน้มถ่วงโลก วงโคจรระยะต่ำมี 3 ประเภท ได้แก่
- วงโคจรขั้วโลก (Polar Orbit) : ดาวเทียมโคจรในแนวเหนือ-ใต้ ในขณะที่โลกหมุนรอบตัวเอง ทำให้ดาวเทียมจึงเคลื่อนที่ผ่านเกือบทุกส่วนของพื้นผิวโลก ดังที่แสดงในภาพที่ 2
ภาพที่ 2 เส้นทางผ่านของดาวเทียมวงโคจรขั้วโลก - วงโคจรศูนย์สูตร (Equatorial Orbit) : ดาวเทียมจะโคจรในแนวระนาบเส้นศูนย์สูตร
- วงโคจรสัมพันธ์กับดวงอาทิตย์ (Sun-Synchronous Orbit) : ดาวเทียมโคจรรอบโลกที่ระยะสูงประมาณ 400 - 900 กิโลเมตร โดยมีมุมเอียง 97-99 องศากับระนาบเส้นศูนย์สูตร ระนาบของวงโคจรทำมุมกับดวงอาทิตย์คงที่ตลอดเวลาทั้งปีที่โลกโคจรไปรอบดวงอาทิตย์ ส่งผลให้ดาวเทียมเคลื่อนที่ผ่านพื้นที่บนโลกตำแหน่งหนึ่ง ณ เวลาท้องถิ่นที่คงที่ ทำให้คุณลักษณะของแสงจากดวงอาทิตย์ที่ตกกระทบพื้นโลกบริเวณที่ต้องการตรวจติดตามเป็นมาตรฐานตลอดทั้งปี ดังแสดงในภาพที่ 3 ดังนั้นวงโคจรสัมพันธ์กับดวงอาทิตย์กับดวงอาทิตย์ (SSO) จึงเหมาะสำหรับดาวเทียมถ่ายภาพ
![PDF] Slot Architecture for Separating Satellites in Sun ...](https://d3i71xaburhd42.cloudfront.net/9c38c38c999071bd1dee66c3a3876761b2492488/2-Figure1-1.png)
- วงโคจรระยะปานกลาง (Medium Earth Orbit "MEO") อยู่ที่ระยะความสูงมากกว่า 2,000 กิโลเมตร แต่ไม่ถึง 35,786 กิโลเมตร สามารถถ่ายภาพและส่งสัญญาณวิทยุได้ครอบคลุมพื้นที่ได้เป็นบริเวณกว้างกว่าดาวเทียมวงโคจรต่ำ แต่หากต้องการสัญญาณให้ครอบคลุมทั้งโลกจะต้องใช้ดาวเทียมหลายดวงทำงานร่วมกันเป็นเครือข่ายและมีทิศทางของวงโคจรรอบโลกทำมุมเฉียงหลายๆ ทิศทาง ดาวเทียมที่มีวงโคจรระยะปานกลางส่วนมากเป็นดาวเทียมนำร่อง เช่น เครือข่ายดาวเทียม GPS ประกอบด้วยดาวเทียมจำนวน 32 ดวง ทำงานร่วมกันดังภาพที่ 4 โดยส่งสัญญาณวิทยุออกมาพร้อมๆ กัน ให้เครื่องรับที่อยู่บนพื้นผิวโลกเปรียบเทียบสัญญาณจากดาวเทียมแต่ละดวง เพื่อคำนวณหาตำแหน่งพิกัดที่ตั้งของเครื่องรับ
 ภาพที่ 4 วงโคจรดาวเทียม GPS
- วงโคจรประจำที่ (Geostationary Earth Orbit "GEO") อยู่สูงจากพื้นโลกประมาณ 35,786 กม. มีเส้นทางโคจรอยู่ในแนวเส้นศูนย์สูตร (Equatorial Orbit) ดาวเทียมจะหมุนรอบโลกด้วยความเร็วเชิงมุมเท่ากับโลกหมุนรอบตัวเองทำให้ดูเหมือนลอยนิ่งอยู่เหนือพื้นผิวโลกตำแหน่งเดิมอยู่ตลอดเวลา จึงถูกเรียกว่า "ดาวเทียมวงโคจรสถิต หรือ วงโคจรค้างฟ้า" เนื่องจากดาวเทียมวงโคจรชนิดนี้อยู่ห่างไกลจากโลกและสามารถลอยอยู่เหนือพื้นโลกตลอดเวลา จึงนิยมใช้สำหรับการถ่ายภาพโลกทั้งดวง เฝ้าสังเกตการณ์เปลี่ยนแปลงของบรรยากาศ และใช้ในการโทรคมนาคมข้ามทวีป
หมายเหตุ: วงโคจรค้างฟ้า หรือ วงโคจรสัมพันธ์กับโลก (Geo-synchronous Orbit "GSO") คือ วงโคจรประจำที่ (GEO) ที่มีมุมเอียงจากระนาบเส้นศูนย์สูตร >1 องศา หรือ <1 องศา
ภาพที่ 5 วงโคจรค้างฟ้า (คลิกที่ภาพ) ที่มา: Talifero - วงโคจรรูปวงรีมาก (Highly Elliptical Orbit "HEO") เป็นวงโคจรออกแบบสำหรับดาวเทียมที่ปฏิบัติภารกิจพิเศษเฉพาะกิจ เนื่องจากดาวเทียมมีความเร็วในวงโคจรไม่คงที่ เมื่ออยู่ใกล้โลกดาวเทียมจะเคลื่อนที่เร็วมาก และเคลื่อนที่ช้าลงเมื่อออกห่างจากโลกตามกฎข้อที่ 2 ของเคปเลอร์ ดาวเทียมวงโคจรรูปวงรี ส่วนมากเป็นดาวเทียมที่ปฏิบัติงานด้านวิทยาศาสตร์ เช่น ศึกษาสนามแม่เหล็กโลก เนื่องจากสามารถมีระยะห่างจากโลกได้หลายระยะดังภาพที่ 6 หรือเป็นดาวเทียมจารกรรมซึ่งสามารถบินโฉบเข้ามาถ่ายภาพพื้นผิวโลกด้วยระยะต่ำมากและปรับวงโคจรได้
ภาพที่ 6 วงโคจรรูปวงรีของดาวเทียมสำรวจสนามแม่เหล็กโลก
|
|